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There is proposed a new method of solving free-dimen~onal boundary value 
problems of the linear theory of elasticity, related to the Castigliano principle, 
Construction of the solution reduces to determination of the projection of an 

element satisfying the equation of elasticity theory in the domain, and the 
boundary condition on a free part of the boundary, in the subspace of boundary 
values of solutions of the boundary value problem of the theory of elasticity 
with inhomogeneous natural boundary conditions. 

1. F 0 I m u 1 a t i o n o f t h e p r o b 1 e m, Scheme of the method. The 
Castigliano principle, to which the method of orthogonal projections reduces in 

problems of the theory of elasticity [I,], is that out of all the stress tensors satisfying 
the equilibrium equations in the domain and a boundary condition on a free part of 
the boundary, the elastic stress tensor expressed by the inequality 

II R* 11x” = II Ro llr2 + II R” - Ro llz* > II Ro /1x2 (1.1) 

communicates the least strain potential energy to the body. 

Here K* is an arbitrary stress tensor satisfying the equilibrium equations of an 
elastic medium, and the boundary condition on a free part of the bounda~* R, is 

the elastic stress tensor, 2 is the Hilbert space generating a set of tensors with 

finite energy integral. This space is decomposable [I] into an orthogonal sum I: = 

21 0 z,, where X1 is a subspace of tensors R’ associated with the displace- 

ment vector u’ satisfying the boundary condition on the fixed part of the boundary, 
and 2s is a subspace of tensors R” related to the displacement vector u” satisfying 
the homogeneous equilibrium equations and the boundary condition on the free part 
of the boundary. Then the condition of orthogonality of the tensors (R’, R”)r = 0 
and R* = R’ + R”, R’ E X,, R” E X2 holds. 

We represent [2] an arbitrary displacement vector u* (z) related to the tensor 

R* satisfying the elasticity theory equation Au* - K: and the b~nda~ condi- 
tion on the free part of the bamdary s, in the form of the sum u* (z) = ug (5) 

+ ‘PO (x), where u0 (x) is the energy solution of the fundamental boundary 
value problem of elasticity theory, and the vector cp, (5) is the solution of the 

additional boundary value problem 

Acp, = 0 in G, P’) (cpo) 1~ = tcv) (u*) Is (1.2) 

737 
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Here A is the differential operator of anisotropic elasticity theory, citilm (2) are 
the anisotropy coefficients of the medium which satisfy symmetry conditions EG 
Elm (U) are strain tensor components, a$’ are directions of the axes xk; G C E, 

is a bounded domain occupied by the elastic medium, with a tw~dime~ional suffic- 
iently smooth surface S as boundary, and t@‘) (u) is the vector of the stresses acting 
on the area of the surface S. 

The solution of the second i~omog~eous problem (1.2) of elasticity theory will 
be understood in the generalized sense as a vector (p. E @‘,l (G) satisfying the integ- 
ral identity 

2 s W (rpo, u)dG - Js (u, u*) II: 0, VUE# (G) (1*3) 
G 

s 

W (u, v) = p c C~~~~E~~ (u) Q(V), J&s (u, v) = 5 u * t’(V) (vets 

i, Jr, I, m==1 S 

Here w(u, u> is a positive definite quadratic form in the components of the elastic 
strain tensor. The Betti formula [l] based on the fact that [3] for u E War(G) and 

Au E L, (G) the trace au i & E W;‘iz (S) is defined uniquely (8 ,f & is the 
derivative with respect to the external normal Y to S) is used in (1.3). Upon com- 
pliance with the conditions 

j W (II*) ds I i t@) (u*) . rds = 0 
6 

[ q&G = j rot q+,dG = 0 
i: 

zero is not an eigennumber of the problem (1,2) [2], and the operator (A, tcv)) is 

an isomorphism from W,l (G) on ,?& (G) x Vi”’ (Sj, i. e., the problem (1.2) 
has a unique solution in the sense (1.3) for any vector W (II*) E!E W;“r (8) sat- 

isfying (1.4). 
The construction of the method of orthogonal expansions on the domain boundary 

reduces to the construction of a subspace of traces I%? (5) C Wi” (S) in which the 

traces &J/S and q30 [s, which make the surface integral Js in (1.3) vanish, are 

orthogonal for all the boundary conditions of elasticity theory problems (Wk’” (s) is 
the Sobolev-Slobodetshii space, and Wi”’ (8) is its dual [3,4] 1. 

The problem of constructing such a space reduces to the problem of constructing 

the equipment of the ~dam~tal space Wu =: La (5’) = (L, (S))’ (tie prime 
denotes duality) of a dual pair of spaces of the traces W c w;, C W’ for which 
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the operator T generated by the boundary form JS as the duality ratio on WL’z (S) 
X wi”’ (8) (which is an extension of the scalar product in I;, (S) because of 

the continuous and compact imbeddings @p (S) fz La (,!?) c lYo’,* (,S’)) is an iso- 
metry from W into I$?‘. This latter is determined by the relation from the known 
ties2 theorem [5] 

(u, v)w = (u, Tv)w, = (Tu, Tv)w, Vu, VEER’ (1.6) 

Then hypotheses about the method of orthogonal expansions in the domain boundary 
result from the properties of the operator ‘I’ , If 
canonical isometry from JJJ;iz (S) into FVt”’ 

T = T,, where T, is the 
(8) (the operator is called partially 

isometric if it is isometric on the orthogonal complement to its core [5] ), then the 

operator T*T is the projector on the subspace (ker T)1 t the initial space of part- 
ial isometry [5], and T is the unitary mapping of (ker T)L on ~~“g(~~ (ker T : 
u E %Vi” (S) 1 Tu = 0). In this case the orthogonal decomposition of the space 

w;‘, (s) holds 

TV;” (8) = ker T @ (ker T)I, dimker T < 00 (1.7) 

The subspace (ker T)A is a subspace W (5’) of boundary values of the vectors ‘PO, 
the solutions of the additional problem (1.2). Then, the method of solving the fuud- 
amental boundary value problem of elasticity theory for uo (x), which is the fund- 
amental method of orthogonal expansions on the domain boundary, follows from the 
orthogonal expansion of the space I$‘~‘* (8) . Let u* (2) be an arbitrary vector 
satisfying the elasticity theory equation Au* = K in the domain G (K (x) is 
the volume force vector) and the boundary condition on the free suface S such that 

u* 1s E Wi” (5’). Projecting the vector u* onto the subspace (ker T)l = W 
and subtracting the projection T* Tu* = q. from the vector u*, we obtain ~0 1= 

u* - cp(). Therefore, the element u. satisfies the equation Au, = K in the 
domain G I and the condition u0 1s = (u* - rpO) 1s EE ker T holds on the bound- 

ary S. The imbedding is here understood in the sense (Tu,, V)o,s = 0, VI7 E w, 
therefore, Tuo = 0 and since T is the unitary mapping of 1;Ti (S) onto WC” (s), 
then u. 1 s = 0. 

The problem of constructing the method of orthogonal expansions on the domain 

boundary therefore reduces to proving the following auxiliary propositions: 
a) The operator T is a partial isometry from Wz’ (8) into wg”’ (3) ; 
b) The initial space of this partial isometry is a subspace of the boundary values 

of the solutions of the additional problem (1.2). 

bet us note that the constructions expounded have points of contiguity with the 
abstract scheme of the method of orthogonal projections of the solution for boundary 

value problems of second order elliptic equations [l]. In particular, the condition of 
applicability of the method of orthogonal projections is common, i. e., we represent 
the positive operator in the form of the product of two conjugate operators. AS Will 
be shown below, T*T is such a product. There are also certain analogies with [6]. 

2. Construction of the Space ~@‘)=~,*“‘~I!?). bet us 
prove the propositions a) and b) formulated in Sect. 1. 

Let the vector functions u and v satisfy the equation Av = 0 in the domain 
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G. Then, according to the Betti formula [I], we obtain 

2 \ W (u, v)dG = Js (u, v) (2.1) 
b 

It hence follows that the bilinear boundary form Js (u, v) is symmetric, and if the 
vector functions u and V satisfy the condition (1.5), then the corresponding quadratic 
form J’ (u, II) will be positive, According to the Riesz theorem on the general form 
of a linear con~nuo~ functional in llilbert space ~71 for the bilinear form (u, tw 
(VI> = Js (u, v) lth e angular brackets signify the duality ratio on Wi” (8) x 
wc’jp (~)}~ which is separately tongues because of the generalized Schwartz in- 

ecwlity I <k t(Y) (VI> I 6 Ii II 11 I/%, s JJ w (v) It-a,~, s, the following representation 
holds: 

Js (u, v) = (u, TV)@, s, VUEW? (5) (2.2) 

Here T is some linear continuous operator determined in the whole space @‘* (S) 
and acting in W;-“” ($) such that 

The compactness of the operator T follows from the compactness of the imbedd- 
ing of I@z (S) into w;,,, (S) and there results from the symmetry of the bi- 
linear form Js (u, v) and the posititity of the quadratic form Js (u, u) that the 
operator T is symmetric and positive, We define the Hilbert conjugate operator T* 
acting from $I?;-“* (S) into ?$‘* (3) for the bounded operator T by the equal- 

(T*Tv, r&z, s = (TV, Tu)+, s (243) 

L e m m a I, The operator T*T acting in Wiiz (S) is self-adjoint and 
positive. 

The proof follows from the fact that the domain of definition is 
Wi” (8) and the operator T is closed and positive. 

D (T*T) = 

Let us define a new scalar product 

lu, VII/,, s = (u, T*Tv)i,,, s (2.41 

with the norm I u I ,jr,~ = {[u, u]~,~,s}‘~~, for the vector functions u, VE 
~~“~~~~Sin~e the absolute value of the operator T is defined in the form ] T 1 = 

J//T*Z then the scalar product can be defined also as follows: 

Iu, VI%/,, s = (IT I u, 1 ‘I’ f VI&~ s (2.51 

The IIilbert space thus obtained which is isometric to the space Wi’ (ii”), as follows 
from (2.5). will be denoted by W~“~ (8). Th ere follows from the isometry of the 

spaces WTJz (S) and I&‘” (8) that the space conjugate to WTiz (8) is W;1118 
(8. There results from (2.3) and (2.4) that the spaces We”’ (8) and WC’:* (S) 

are isometric 
lu, vlv,, s = (Tu, TV)+,, s, Vu, VEW,*“‘“(S) 
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Therefore, the operator T : Wz”’ (8) + W<“’ (S) is isometric and unitary 
because of the reversibility (the core of the operator T in IV?” (S) is ker T= (0)). 
Therefore, the space constructed Wr” (S) is a subspace of the traces u 1~ E Wi’* 

(8) for which the boundary form .Ts (u, u) is positive, It follows from the results 
of Sect.1 that the boundary values cpO 1s of the solution ‘PO of the additional prob- 

lem (1.2) in the sense of (1.3) belong to this subspace. 
It follows from the theorem on the polar decomposition of bounded operators [5] 

that the polar decomposition T = U 1 T 1 holds for the operator T acting from 

Wl” (S into IJV;“~ (S), where 1 T 1 =: 1/-T*T is a positive operator acting 

in ? IV: ’ (S), and U is a partial isometry from R$” (8) in IYzi* (S), which is 
defined uniquely by the condition ker U = ker T. Since the operator is reversible, 
then the operator U in the decomposition presented is unitary [5]. 

L e m m a 2. The operator is U = To in the polar decomposition T= 
U IT 1, where T, is the canonical isomety of Wi/z (8) into IV;“* (S). 

The proof results from the fact that the operators U and To isometrically map 

the domain of values of the operator 1 T 1 : Ran 1 T 1 - W,*“” (S) into W;“Z 
(s), and therefore, the following representations hold 

lu, v1*/*, s = (UP Uv)o, 8% fu, VI*/,, s = (u, Tovfo, ‘9, Vu, vE:w;l~Z (S) 

Examining these equalities jointly, we obtain that U = T,, The propositions 

a) and b) formulated in Sect. 1 are proved on the basis of the polar decomposition 
T=T, ITI. 

T h e o r e m 1. The operator T is a partial isometry from the space R$” (s) 

into the space IV, -I’* (S) which satisfies the condition ker T = ker To with the 

intial space (ker T)A = WF’r (5’). 
The proof follows from the fact that the equali Tu = T,u holds in the vector 

functions u E Ran 1 T 1 = %?’ (S) , and, predefining the operator To to be 
zero in the orthogonal complement (Ran \ T \)J- , we obtain ker T = ker To = 
(Ran I T 1)’ because of the equalities (Ran ) T 1 )J- = ker 1 T 1 (which follows 

from the self-adjointness of the operator 1 T I = 1 T I *) and ker T = ker 1 T 1, 

C o r o 11 a r y. The orthogonal expansion (1.7) of the space w:!t (s) holds, 
and the operator T*T is a projector on WZ*f” (S). 

Since the spaces Wr” (5’) and @$+‘I’ (S) are isometric, then by the ties2 

theorem the relationship (see (1.6)) 

[u, ~]i/~, s = (u, Tv)o, s = (Tu, TV)+,, sc Vu> vE.wz*“‘(s) (2.6) 

holds. From this and (2.2) there follows 

[u, VI& s = Js (u, v), Vu, VGW:‘~ (S) (2.7) 

From (2.7) there follows that 
1”. The bilinear form Js fu, v), Vu, v E Wr” (5) can be considered as 

a generalization of the fractional scalar product in the space Wi” (S) in boundary 

value problems of elasticity theory; 
2”. If the vectors u E I#2 (S) and W’), (v) E We”’ (S) make the integral 
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Js (u, v> vanish, 1 s and v 1 s are orthogonal in the metric 
of the space of traces WF”* (S). 

3. Orthogonal expansions on the domain bound- 
ary in elasticity theory problems. Let us formulate the 
condition for orthogonality of the traces u’ 1s and U” 1s of the displacement 
vectors U’ and u” associated with the tensors R’ and R”-‘and making the boundary 
integral Js (u’, u”) vanish, in the metric WC’!’ (s). Let us prove some auxiliary 
propositions. 

L e m m a 3. Let P C_ @‘i” (8) be a closed subspace of traces of the vectors 
U’. Then the linear set of functionals 

pL = {tw (u”) t=wo_“~ (8) 1 (u’, t(y) (If)) _-= 0, Vll’f=g} 

is a closed subspace of the space w‘:‘? (S). 

and 

Let {tr’ (u”)} be a sequence in Pl for which 11 tr’ (u”) - t@‘) (u”) I/_-‘/n, s i-i 

t(y) (u”) EWp’ (S), 

Jj tp (u”) - t(Y) (u”) (I-*/$, s -> 0. 
t’lenTh~~e~~r~~~:~~“~u~) tz 62’ 1 < Ij u’ jl’/l, fj 

We call P-L the orthog%a? complement to P in Wq”’ (8). 

L e m ma 4. The Linear set 

P@ = (U”EW,*“‘(S) 1 Id, lf]x,*, s = 0, VU’~P} 

is a closed subspace of the space W:‘12 (8) and is a Hilbert orthogonal complement 
to P in W2*“’ (8). 

Lemma 4 is proved analogously to Lemma 3, 

Lemma 5. The relation between the subspaces P@ and Pl #of the dual 

pair W;l” (S) X Wr”’ (S) is established according to the relationship pl= 
Tp@:, where T is the isometry W,*“’ (S) into WT”’ (,I$). 

Indeed, since by virtue of the equalities (2.6) and (2.7) 

[u’, u”j,,/, s = (u’, Tu”)~ s .+= (u’, t(v) (u”)\ /7 VU’EW~“’ (S) 

then un E P@ if and only if T;” E Pl, i.e., when t(v) (u”) E Pl. 
The subspace P will be treated as a subspace of the boundary conditions for the 

displacement vectors u’ on the clamped part of the surface S; the subspace P@ 
is treated as a subspace of the boundary values of the vectors u” which satisfy the 

homogeneous elasticity theory equation Au” = 0 and the boundary conditions on 

the free part of the surface in the domain G . 

Theorem 2. If the vectors u’ 1 s E P, t(v) (u”) E PL, i. e., are ortho- 
gonal in the sense {u’, t@) (u”)) = 0, th en the vectors u’ 1 s E P, u” 1s E 
PO, i.e., are orthogonal in the sense [u’, u”],~~,~ = 0. 

Theorem 2 results from Lemmas 3-5. 

Corollary. The orthogonality condition [u,,, (P~~,,~,s = 0 holds for the 
expansion u* = u0 + ‘pa (see Sect. 1). 

Theorem 3. An arbitrary displacement vector u* satisfying the elasticity 
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theory equation Au * 
S such that 

= K and the boundary condition on the free part of the surface 
U* Is E Wi’* (S) will be represented in the form u* 1s = u’ Is -/- 

u”ls, u’ls E P, ~“1s E P@ on the boundary S. 
Let the stress vector t@‘) (u*) associated with u* (2) vanish on the free part of 

the surface S. Let U’ be the vector of the elastic displacements, then u’/ $ E P 
and Us) (U’) E PL, Let us set uR = u* - u’ . Then the vector U” satisfies the 
homogeneous equation of elasticity theory. We show that lll(/a E Pa. Indeed, since 
the relationship (u’, t@‘)(u*)) = Js (u’, u*) = 0, holds fortheb~nda~condi~o~ 
of elasticity theorem problems, then by virtue of Lemma 3 the vector W(u*)e PL, 
Then ‘die vector t@‘j (u”) = tW (u*) _ to9 (u’) E Pl. Hence u” Is E p@ 
follows by virtue of Lemma 5. 

C o r o 1 I a r y. The orthogonal expansion 

~~‘!~(S) = P @j P@,. 

follows from Theorems 2 and 3, 
Since T is a bounded operator from &‘i” (S) into R7;“’ (S), then the expres- 

sion (u, TV),, a, Vu, v E NJ;‘, (S) is a bilinear continuous ~nctiona~ in K’i’” (5’). 
Then the bounded linear operator T@ which also maps WY’ (S) into E’;‘l’ (S) and 
for which (U, TV),, s = (T@u, v)@, a, Yv E Wi’Z (S), is determined uniquely, We 
call the operator T@ the generalized conjugate to thg operator 

, Ki2 (S), tlxrl 

T. of u, v E 
iu, dl,,, s = (u, TV),, s = (Tu, V)& s folJows from (2.61, 

1. e. I the operator T defined on wTII: (S) is generally self-adjoint T = T’S 
(the operator T@ has the meaning ofaself-adjoint Friedrichs expansion of the operator 

‘I’ 1. 

Lemma 6. (Ran T)-L = ker T, 
The proof of the lemma follows from the exposition above (see [5], for instance). 
Let us now specify the subspaces P and PO for the First and second boundary 

value problems of elasticity theory [l]. 
The first boundary value problem is: u’ 1s = u,ls = 0, then P = (0) and, 

therefore, (u‘, t@‘) (II”)> = (u’, Tu”)*, a = 0, ‘tTtP’) (u”) E J+‘;“z, i. e, I 
pJ_ = J@* Then u’ E (Ran T)i = ker T = P = (0) follows from Lemma 
6, and PO = W:” (S) = (ker-T)J- follows from P@ = T-“Pl , Therefore 
the vectors u* = cpo, t(V) (u”) = t(v) (q()) are not subject to any boundary condi- 
tions on S since the whole boundary is clamped. 

The second boundary value problem is: W (u”) 1s = ttv) (cpO) 1s = 0; then 
PL = (01 and <u’, W (II”)> = (u‘, Td’),, s = 0, 
P = Wi” (S)s (indeed, the vector u’ = u. 

Vu’ E Wi’*, i. e,, 
is not subject to any boundary condi- 

tions in the case of the second boundary value problem). From the relations PO = 
T-LPI- and Lemma 6 there follows u” E Pa = (0) = ker T, therefore, the 
vector u# = ‘pO = 0 on S. 

In fact, if t@‘) (u*) Is = 0, then the fact that the volume integral for all the 
vectors u E R’s1 (G) is zero (such that elm (u) # 0) foUows from the integral 
identity (1.3). Then ‘p. = const, i.e., q0 is the vector of a small rigid body 
dispJ.acement without deformation, which is impossible since the constant satisfying 
condition (1.5) is identically zero. 
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In conclusion, let us indicate the relationship between the exposition and the 
Castigliano principle, which is that the norms of the stress vectors t(V) (u*), t(v) (q,), 
tf’) (cp@) acting on the surface S are interrelated by an inequa~ty analogous to 

(I.. 1). III fact, the orthogona~ty of the elements Tu, and Ttpo in the metric W;“* 
(8) follows from the or~ogona~~ of the traces uI) is and ipO 1~ in the metric 

I&‘,*“” (8) and the equality (2.6). Then the inequality 

II fP) V> II%*, s == II VJ) Cue) tI:f/,, s i- Ii t(v) (u*> - w (Ito) g_*/& s > 

fl t+) (uol If”% s 

holds because of the equality I!Tu [I_slz.s = [I t@‘) (u) IIJir,S . 

4, Conrtruction of the solution of the funda- 
mental boundary value problems of elasticity 

t h e o r ye The first problem is: Au, = K: in G, uols = 0, 

1” From the results of Sect.3 , * P = {0), P@ = W;*‘i* (,q for the first prob- 

lem. Then using the scheme of the method elucidated1 in Sect, 1, we obtain the 

solution If 0 by projecting the vector u* on the subspace P@ = Wr’” (8) and 

sub~acting the projection from the vector u* : un = u* - n[u* fl us _ 9o, 

where J’I = T*T is the ort~p~jector on W:‘12 (5) (see the corollary to Theorem 

1). 2Therefore, u. ]S E P = (0) on the boupdary. 
As follows from Sect. 1, the vector rp, is a solution of the additional prob- 

lem (112) in the sense of (1.3), which hence satisfies condition (1.5). Let us construct 

the projection cpo - IIu*. Let (*i):gF be a system of linearly independent suff- 

iciently smooth vector functions such that the 9i satisfy the equation ilqi = 0 
in the domain G and the condition 

1 
’ bide = 0 

Let us or~onorma~ze the system “{sit with respect to the energy of the second 

boundary value problem: 

In fact [l], the expression 

(2 J w (UfdC)“” 
G 

for u E W,l (G) satisfying (1.5), is the energy norm of the second boundary value 

problem of elasticity theory. Let us subject the system (I#~‘) to the cor,dition of 

completeness with respect to the energy of the second problem [l]. Then, since qio 

s_@isfies A*$” = 0 by virtue of the equalities (2.1)~ (2.7) and (4. I), the system 

&i”I is or~onorma~ed and complete in the metric of the space w:fi, (S). 

Let us construct the projection m 

COO = ‘U* ~ z IU*, 9i”],,,, SOLO = ~ JS (U*, bib) pi 
i=l i=1 

so that cpo IS E PO, then u. 1~ = (u* - cpo) ls'e p r= (0). 
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3”. The vector gai = Js (U*, llfi’) @*, i = j t 2, . -. satisfies the integral ident- 
ity (1.3)” Indeed, we obtain from (1.3) 

&(u*,$io). 2 W(~$i",u)dG- Js(u*,u)= 0, Vuc=~~l(G) 
5 

We now set u F Q”, i = 1, 2, .., , and taking account of (4.1) obtain the 
identity. 

4”. Let us show that the vector ug = u* - ‘p. is a solution of the first prob- 
lem of elasticity theory. To do this it is sufficient to see that u. is the energy solu- 
tion of this problem. Satisfaction of the boundary condition u. 1s = 0 follows from 
Uo 1s E P = (0). Th e vector u* which is a solution of the equation &r* = K 

satisfies the integral identity [Z]: 

2 ~~~u*,u)~G-Js(u*,u) = f KudG, Vu~Wz'(G). 
G G 

The vector cpo satisfies (1.3), therefore, the vector u. satisfies the integral ident- 

ity 
2 j I+’ (uo, u) dG = j K&G, VUEW~’ (G) 

t: G 

which is a generalization of the Euler-Lagrange equation for the energy functional of 
the first problem [l] for u s H, c W,l (G) (H,is the energy space of the first 
problem of elasticity theory El] ). 

The second problem is: An, = K in G, t(y) @lo) 1s = 0. For the second 
problem P = w;'* (S), P@ = (0). From P@ = {0} there 
follows that tp,& = 0 and the vector 4p. is identically zero as a solution of the 
problem Acpo = 0, t(v) (cpo)Is = 0 (t(V) (tp,) Is = t(v) (u*)Is = 0 is the condi- 
tion on the free surfaceS). Then u. = u* - (p. = u* , and therefore, Au, = K 

in G; on the boundary U@ 1s E P = I%$‘* (S). It hence follows that the 
vector u*can itself be a solution of the second problem since 

Au* = K, tW (u)” Is = 0. 

The third problem is: Au, = K in G, u. 18, = 0, t(V) (uo) IsI = 0, The vector 

ug = u* - i$1 Iu*, %;ll/,, s&i” = u* - $gl Jst(u*, %T 4’” 

is the solution of this problem (here the projector I& -- T;*T, is determined just 
by the integral over S,). Therefore u. IS, = (XI* - cpo) Is, E Ps, = {O), 
hence the vector U* and the coordinate functions g, must be subjected additionally 
t0 the condition t@) (4i) Is, ==‘ 0. 

As follows from Es], the vector u* can be taken as 

u* (x) = s VKdG 
G 

where V is the Somigliana tensor [8]. 



746 V. Ia. Tereshehenko 

REFERENCES 

1. Mikhlin, S. G., Variational Methods in Mathematical Physics. (English trans- 
lation), Pergamon Press, Book No. 10146, 1964. 

2. T e r e s h c h e n k o, V. la., Generalization of the Trefftz method for three- 
dimensional elasticity problems, (English translation), Pergamon press, J. 
USSR Comput. Math. math. Phys. Vol. 16, No.4, 1976. 

3. L i o n s, J.-L. and M a g e n es, E. Problemes aux dimites non IiOmOg&XS er 

App~ca~o~, Paris, Dunod, 1968-1970, 

4, S 1 o b o d e t s k i i, L. I?. Generalized S, L. Sobolev spaces and their applica- 
tion to boundary value problems for partial differ~tial equations, When. 
Zapiski Leningrad State Pedagogic Inst., Vol. 19’7, 1958. 

5, Dunford, N, andSchwartz,J., Linear Operators, Pt. 2 Spectral Theory. 
“Mir, ‘* Moscow, 1966 (see also pt. 1, New York Interscience Publ. Incorp. 

1958). 

6. V i s h i k, M, I,, Method of orthogonal and direct expansions in the theory of 

elliptic differential equations, Matem. Sb., Vol. 25, No. 2, 1949. 

‘7, A k h i e z e r, N. I, and G 1 a z m a n, I. M., Theory of Linear Operators in 
Hilbert Space, “Nauka”, Moscow, 1966. 

8, Mikhfin, S. G,, Problem of the ~~rnurn of a Quadratic Functional, (English 
translation), San Francisco, Ilolden - Day, 1965. 

Translated by M, D. F. 


